Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168980, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040366

RESUMEN

Pyrite and humic acid are common substances in nature, and the combined effects of pyrite and humic acid on arsenic phytotoxicity are more widespread in the actual environments than that of a single substance, but have received less attention. In this study, the interaction between pyrite and humic acid in arsenate solution was studied, and the effects of pyrite and humic acid on plant toxicity of arsenate were evaluated. The results showed that arsenate + pyrite + fulvic acid (V-PF) treatment immobilized more arsenic by forming chemical bonds such as AsS and Fe-As-O and reduced the migration of arsenic to plants. Compared to the arsenate + fulvic acid (VF), arsenate + pyrite (VP) and arsenate (V) group, the inorganic arsenic content of lettuce leaves in the V- PF group was reduced by 19.8 %, 13.4 % and 13.4 %, respectively. In addition, the V-PF group increased the absorption of Ca, Fe and Cu in plant roots, and improved the activity of superoxide dismutase (SOD) in plant leaves. Compared to the VF group, SOD and MDA in the V-PF group increased by 34.1 % in 30 days and decreased by 47.3 % in 40 days, respectively. The biomass of lettuce in V-PF group was increased by 29.3 % compared with that in VF group on day 50. The protein content of the V-PF group was 58.3 % higher than that of the VF group and 23.1 % higher than that of the VP group. Furthermore, metabolomics analysis showed that the V-PF group promoted glycolysis by up-regulating glyoxylic acid and dicarboxylic acid metabolism, thus reducing carbohydrate accumulation. Phosphocreatine metabolism was also up-regulated, which decreased the oxidative damage in lettuce induced by arsenic. This study will provide new ideas for scientifically and rationally assessing the ecological environmental risks of arsenic and regulating its toxicity.


Asunto(s)
Arseniatos , Arsénico , Hierro , Sulfuros , Arseniatos/toxicidad , Arseniatos/metabolismo , Arsénico/metabolismo , Sustancias Húmicas/análisis , Lactuca , Superóxido Dismutasa/metabolismo
2.
J Hazard Mater ; 441: 129879, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084464

RESUMEN

Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.


Asunto(s)
Microplásticos , Ríos , Amoníaco , Carbono , Dióxido de Carbono , Calor , Microplásticos/toxicidad , Nitrógeno , Oxígeno , Plásticos
3.
ACS Appl Bio Mater ; 4(7): 5503-5519, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35006747

RESUMEN

Many engineered nanomaterials (ENMs) and drugs have been fabricated to improve memory and promote neuroprotection, but their use remains challenging due to their high cost, poor ability to penetrate the blood-brain barrier (BBB), and many side effects. Herein, we found that nanoparticles with multiple enzymatic activities purified from groundwater (NMEGs) can efficiently cross the BBB and present memory-enhancing and neuroprotective effects in vitro and in vivo. In contrast to the adverse effects of chemicals and ENMs, NMEGs are able to cross the BBB by endocytosis without damaging the BBB and even possibly promote BBB integrity. NMEGs-treated normal mice were smarter and better behaved than saline-treated normal mice in the open-field test and Morris water maze test. NMEGs can enhance synaptic transmission by increasing neurotransmitter production and activating nicotinic acetylcholine receptors (nAChRs), activate the antioxidant enzyme system, and increase the number of mitochondria and ribosomes in cells. Intravenous NMEGs injection also rescued memory deficits and increased antioxidant capacity in Parkinson's disease (PD) mice due to the antioxidant activity caused by the presence of conjugated double bonds and abundant phenolic -OH groups. This study is a proof-of-principle demonstration that natural products are less expensive, more easily available, safer, and more effective ways to improve memory and promote neuroprotection than ENMs and reported drugs. Our article also shows the potential of NMEGs as a PD treatment in patients via intravenous injection, as they avoid the complex modifications of ENMs. In the future, it will be possible to treat PD by intravenously injecting NMEGs in patients.


Asunto(s)
Agua Subterránea , Nanopartículas , Enfermedad de Parkinson , Animales , Antioxidantes/farmacología , Barrera Hematoencefálica , Humanos , Ratones , Nanopartículas/química , Neuroprotección
4.
Environ Sci Technol ; 54(6): 3395-3406, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32097552

RESUMEN

Elucidation of the relationships between nanoparticle properties and ecotoxicity is a fundamental issue for environmental applications and risk assessment of nanoparticles. However, effective strategies to connect the various properties of nanoparticles with their ecotoxicity remain largely unavailable. Herein, an untargeted metabolic pathway analysis was employed to investigate the environmental risk posed by 10 typical nanoparticles (AgNPs, CuNPs, FeNPs, ZnONPs, SiO2NPs, TiO2NPs, GO, GOQDs, SWCNTs, and C60) to rice (a staple food for half of the world's population). Downregulation of carbohydrate metabolism and upregulation of amino acid metabolism were the two dominant metabolic effects induced by all tested nanoparticles. Partial least-squares regression analysis indicated that a zerovalent metal and high specific surface area positively contributed to the downregulation of carbohydrate metabolism, indicating strong abiotic stress. In contrast, the carbon type, the presence of a spherical or sheet shape, and the absence of oxygen functional groups in the nanoparticles positively contributed to the upregulation of amino acid metabolism, indicating adaptation to abiotic stress. Moreover, network relationships among five properties of nanoparticles were established for these metabolic pathways. The results of the present study will aid in the understanding and prediction of environmental risks and in the design of environmentally friendly nanoparticles.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Metabolismo de los Hidratos de Carbono , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...